Efeito da suplementação com selênio e com as vitaminas C e E sobre biomarcadores hematológicos em militares durante treinamento físico vigoroso e prolongado

##plugins.themes.bootstrap3.article.main##

Marcio Sena
https://orcid.org/0000-0003-4671-5100
Marcos Fortes
https://orcid.org/0000-0003-2038-5545
Danielli Mello
https://orcid.org/0000-0003-3609-0004
Sergio Lisboa
Marcos Pereira
https://orcid.org/0000-0001-5594-2255

Resumo

Neste estudo, investigamos o efeito da suplementação com selênio, vitaminas C e E sobre biomarcadores hematológicos em militares submetidos a exercício físico vigoroso e prolongado (EFVP). Participaram 24 homens (32,0 ± 7,2 anos), durante 37 dias (18 antes do treinamento e, 19 durante EFVP). Dois grupos foram separados aleatoriamente: Grupo Suplementado (GS) e Grupo Placebo (GP). O GS (n=13) ingeriu cápsulas contendo selênio quelado (0,06 mg), vitamina C (1000 mg) e vitamina E (500 mg) e, o GP: (n=11) ingeriu (1500 mg de amido). O sangue foi coletado antes do início do estudo (T0); ao final da primeira (T1) e terceira (T2) semana de EFVP. Os dados foram analisados pela ANOVA 3X2 (p<0,05). A hemoglobina reduziu em T1 e T2 no GS e GP versus T0. A hemoglobina corpuscular média reduziu em T1 e T2 no GS e no GP apenas em T2 versus T0. A concentração da hemoglobina corpuscular média reduziu no GS em  T1  e T2 versus T0, porém  no GP reduziu em T2 versus T0 e T1. As hemácias, hematócrito, volume corpuscular médio e RDW não apresentaram diferenças significativas. O EFVP induziu uma diminuição na hemoglobina dos militares e a suplementação não promoveu proteção contra este dano.

Downloads

Não há dados estatísticos.

##plugins.themes.bootstrap3.article.details##

Como Citar
Sena, M., Fortes, M., Mello, D. ., Lisboa, S., & Pereira, M. (2022). Efeito da suplementação com selênio e com as vitaminas C e E sobre biomarcadores hematológicos em militares durante treinamento físico vigoroso e prolongado. Jornal De Investigação Médica (JIM), 3(1), 087–104. https://doi.org/10.29073/jim.v3i1.486
Secção
Artigo

Referências

Aguiló, A., Tauler, P., Sureda, A., Cases, N., Tur, J., & Pons, A. (2007). Antioxidant diet supplementation enhances aerobic performance in amateur sportsmen. Journal of Sports Sciences, 25(11), 1203–1210. https://doi.org/10.1080/02640410600951597

Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 compendium of physical activities: A second update of codes and MET values. Medicine and Science in Sports and Exercise, 43(8), 1575–1581. https://doi.org/10.1249/MSS.0b013e31821ece12

Alis, R., Romagnoli, M., Primo-Carrau, C., Pareja-Galeano, H., Blesa, J. R., & Sanchis-Gomar, F. (2015). Effect of exhaustive running exercise on red blood cell distribution width. Clinical Chemistry and Laboratory Medicine, 53(2), e29–e31. https://doi.org/10.1515/cclm-2014-0749

Balushi, H. Al, Hannemann, A., Rees, D., Brewin, J., & Gibson, J. S. (2019). The effect of antioxidants on the properties of red blood cells from patients with sickle cell anemia. Frontiers in Physiology, 10(JUL). https://doi.org/10.3389/fphys.2019.00976

Barbosa, K. B. F., Costa, N. M. B., De Cássia Gonçalves Alfenas, R., De Paula, S. O., Minim, V. P. R., & Bressan, J. (2010). Estresse oxidativo: Conceito, implicações e fatores modulatórios. Revista de Nutricao, 23(4), 629–643. https://doi.org/10.1590/S1415-52732010000400013

Bissinger, R., Bhuyan, A. A. M., Qadri, S. M., & Lang, F. (2019). Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS Journal, 286(5), 826–854. https://doi.org/10.1111/febs.14606

Borg, G. (2000). Escalas de Borg para a dor e o esforço: percebido. São Paulo: Manole.

Brasil. (2013). Ministério da Defesa. Exército Brasileiro. Caderno de Instrução de Treinamento e Técnica Básica do Paaraquedista Militar - EB70-CI-11.001. 1a ed. file:///C:/Users/mabsm/Downloads/EB70-CI-11.001 (5).pdf

Brendel, H., Shahid, A., Hofmann, A., Mittag, J., Bornstein, S. R., Morawietz, H., & Brunssen, C. (2020). Nadph oxidase 4mediates the protective effects of physical activity against obesity-induced vascular dysfunction. Cardiovascular Research, 116(10), 1767–1778. https://doi.org/10.1093/cvr/cvz322

Chou, C. C., Sung, Y. C., Davison, G., Chen, C. Y., & Liao, Y. H. (2018). Short-term high-dose vitamin C and E supplementation attenuates muscle damage and inflammatory responses to repeated taekwondo competitions: A randomized placebo-controlled trial. International Journal of Medical Sciences, 15(11), 1217–1226. https://doi.org/10.7150/ijms.26340

Coates, A., Mountjoy, M., & Burr, J. (2017). Incidence of Iron Deficiency and Iron Deficient Anemia in Elite Runners and Triathletes. Clinical Journal of Sport Medicine, 27(5), 493–498. https://doi.org/10.1097/JSM.0000000000000390

Cotinguiba, G. G., Silva, J. ocksane do N., Azevedo, R. R. de S., Rocha, T. J. M., & Santos, A. F. dos. (2013). Método de Avaliação da Defesa Antioxidante : Uma Revisão de Literatura Methods of the Antioxidant Defense : A Literature Review. UNOPAR Cient., Ciênc. Biol. Saude, 15(3), 231–237.

Cunha, T. F., Bechara, L. R. G., Bacurau, A. V. N., Jannig, P. R., Voltarelli, V. A., Dourado, P. M., Vasconcelos, A. R., Scavone, C., Ferreira, J. C. B., & Brum, P. C. (2017). Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats. Journal of Applied Physiology, 122(4), 817–827. https://doi.org/10.1152/japplphysiol.00182.2016

Danese, E., Lippi, G., Sanchis-Gomar, F., Brocco, G., Rizzo, M., Banach, M., & Montagnana, M. (2017). Physical Exercise and DNA Injury: Good or Evil? In Advances in Clinical Chemistry (1st ed., Vol. 81). Elsevier Inc. https://doi.org/10.1016/bs.acc.2017.01.005

Dasso, N. A. (2019). How is exercise different from physical activity? A concept analysis. Nursing Forum, 54(1), 45–52. https://doi.org/10.1111/nuf.12296

Di Meo, S., Napolitano, G., & Venditti, P. (2019). Mediators of physical activity protection against ros-linked skeletal muscle damage. International Journal of Molecular Sciences, 20(12), 1–38. https://doi.org/10.3390/ijms20123024

Epstein, D., Borohovitz, A., Merdler, I., Furman, M., Atalli, E., Sorkin, A., Stainfeld, Y., Isenberg, Y., Mashiach, T., Shapira, S., Weisshof, R., & Dann, E. J. (2018). Prevalence of Iron Deficiency and Iron Deficiency Anemia in Strenuously Training Male Army Recruits. Acta Haematologica, 139(3), 141–147. https://doi.org/10.1159/000485736

Failace, R. (2015). Hemograma: manual de interpretação (Artmed Edi).

Fibach, E., & Rachmilewitz, E. (2008). Fibach, E., & Rachmilewitz, E. (2008). The role of oxidative stress in hemolytic anemia. Current molecular medicine, 8(7), 609-619.‏. 609–619.

Gammone, M. A., Gemello, E., Riccioni, G., & D’Orazio, N. (2014). Marine bioactives and potential application in sports. Marine Drugs, 12(5), 2357–2382. https://doi.org/10.3390/md12052357

Gaschler, M. M., & Stockwell, B. R. (2018). Lipid peroxidation in cell death. Biochem Biophys Res Commun, 176(1), 100–106. https://doi.org/10.1016/j.bbrc.2016.10.086.Lipid

Hasani, M., Djalalinia, S., Khazdooz, M., Asayesh, H., Zarei, M., Gorabi, A. M., Ansari, H., Qorbani, M., & Heshmat, R. (2019). Effect of selenium supplementation on antioxidant markers: a systematic review and meta-analysis of randomized controlled trials. Hormones, 18(4), 451–462. https://doi.org/10.1007/s42000-019-00143-3

Helmut Sies, Carsten Berndt, and D. P. J. (2017). Oxidative Stress. Annual Review of Biochemistry, 86, 715–748. https://doi.org/https://doi.org/10.1146/annurev-biochem- 061516-045037

Hoffbrand, A. V, & Steensma, D. P. (2020). Hoffbrand’s Essential Haematology (8 ed).

Kumar, D., & Rizvi, S. I. (2014). Markers of oxidative stress in senescent erythrocytes obtained from young and old age rats. Rejuvenation Research, 17(5), 446–452. https://doi.org/10.1089/rej.2014.1573

Lippi, G., & Sanchis-Gomar, F. (2019). Epidemiological, biological and clinical update on exercise-induced hemolysis. Annals of Translational Medicine, 7(12), 270–270. https://doi.org/10.21037/atm.2019.05.41

Lücker, A., Secomb, T. W., Weber, B., & Jenny, P. (2017). The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation, 24(3). https://doi.org/10.1111/micc.12337

Mairbäurl, H. (2013). Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, 4 NOV(November), 1–13. https://doi.org/10.3389/fphys.2013.00332

Marengo, B., Nitti, M., Furfaro, A. L., Colla, R., Ciucis, C. De, Marinari, U. M., Pronzato, M. A., Traverso, N., & Domenicotti, C. (2016). Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/6235641

Marfell-Jones, M., Esparza-Ros, F., & Vaquero-Cristóbal, R. (2019). ISAK accreditation handbook. Murcia: International Society for the Advancement of Kinanthropometry - ISAK.

Mariño, M. M., Grijota, F. J., Bartolomé, I., Siquier-Coll, J., Román, V. T., & Muñoz, D. (2020). Influence of physical training on erythrocyte concentrations of iron, phosphorus and magnesium. Journal of the International Society of Sports Nutrition, 17(1), 1–7. https://doi.org/10.1186/s12970-020-0339-y

Maynar, M., Bartolomé, I., Alves, J., Barrientos, G., Grijota, F. J., Robles, M. C., & Munõz, D. (2019). Influence of a 6-month physical training program on serum and urinary concentrations of trace metals in middle distance elite runners. Journal of the International Society of Sports Nutrition, 16(1), 1–10. https://doi.org/10.1186/s12970-019-0322-7

Mohanty, J. G., Nagababu, E., & Rifkind, J. M. (2014). Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Frontiers in Physiology, 5 FEB(February), 1–6. https://doi.org/10.3389/fphys.2014.00084

Müller-Schilling, L., Gundlach, N., Böckelmann, I., & Sammito, S. (2019). Physical fitness as a risk factor for injuries and excessive stress symptoms during basic military training. International Archives of Occupational and Environmental Health, 92(6), 837–841. https://doi.org/10.1007/s00420-019-01423-6

Myhre, K. E., Webber, B. J., Cropper, T. L., Tchandja, J. N., Ahrendt, D. M., Dillon, C. A., Haas, R. W., Guy, S. L., Pawlak, M. T., & Federinko, S. P. (2016). Prevalence and Impact of Anemia on Basic Trainees in the US Air Force. Sports Medicine - Open, 2(1), 0–6. https://doi.org/10.1186/s40798-016-0047-y

Nikolaidis, P. T., Veniamakis, E., Rosemann, T., & Knechtle, B. (2018). Nutrition in ultra-endurance: State of the art. Nutrients, 10(12). https://doi.org/10.3390/nu10121995

Ojanen, T., Jalanko, P., & Kyröläinen, H. (2018). Physical fitness, hormonal, and immunological responses during prolonged military field training. Physiological Reports, 6(17), 1–10. https://doi.org/10.14814/phy2.13850

Padovani, R. M., Amaya-Farfán, J., Colugnati, F. A. B., & Domene, S. M. Á. (2006). Dietary reference intakes: Application of tables in nutritional studies. Revista de Nutricao, 19(6), 741–760. https://doi.org/10.1590/S1415-52732006000600010

Pingitore, A., Lima, G. P. P., Mastorci, F., Quinones, A., Iervasi, G., & Vassalle, C. (2015). Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition, 31(7–8), 916–922. https://doi.org/10.1016/j.nut.2015.02.005

Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040

Poblete-Aro, C., Russell-Guzmán, J., Parra, P., Soto-Muñoz, M., Villegas-González, B., Cofré-Bola-Dos, C., & Herrera-Valenzuela, T. (2018). Efecto del ejercicio físico sobre marcadores de estrés oxidativo en pacientes con diabetes mellitus tipo 2. Revista Médica de Chile, 146(3), 362–372. https://doi.org/10.4067/s0034-98872018000300362

Pollock, M., & Wilmore, J. (1993). Health and disease exercises: assessment and prescription for prevention and rehabilitation (2a ed).

Pospieszna, B., Kusy, K., Słomińska, E. M., Dudzinska, W., Ciekot-Sołtysiak, M., & Zieliński, J. (2020). The effect of training on erythrocyte energy status and plasma purine metabolites in athletes. Metabolites, 10(1), 1–15. https://doi.org/10.3390/metabo10010005

Rapido, F. (2017). The potential adverse effects of haemolysis. Blood Transfusion, 15(3), 218–221. https://doi.org/10.2450/2017.0311-16

Rifkind, J. M., Mohanty, J. G., & Nagababu, E. (2015). The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Frontiers in Physiology, 6(JAN), 1–7. https://doi.org/10.3389/fphys.2014.00500

Saidi, K., Zouhal, H., Rhibi, F., Tijani, J. M., Boullosa, D., Chebbi, A., Hackney, A. C., Granacher, U., Bideau, B., & Abderrahman, A. Ben. (2019). Effects of a six-week period of congested match play on plasma volume variations, hematological parameters, training workload and physical fitness in elite soccer players. PLoS ONE, 14(7), 1–17. https://doi.org/10.1371/journal.pone.0219692

Sanchis-Gomar, F., Alis, R., Rodríguez-Vicente, G., Lucia, A., Casajús, J. A., & Garatachea, N. (2016). Blood and urinary abnormalities induced during and after 24-hour continuous running: A case report. Clinical Journal of Sport Medicine, 26(5), e100–e102. https://doi.org/10.1097/JSM.0000000000000222

Sies, H. (2018). On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7(2018), 122–126. https://doi.org/10.1016/j.cotox.2018.01.002

Silva, A. C. da, Guimarães, T. T., Silva, J. M. da, Gomes, D. V., Mendonça, C. F., Pesquero, J. B., Palmisano, G., Moreira, J. C., & Pereira, M. D. (2021). Rabdomiólise em militares: uma missão de reconhecimento para prevenção. Military rhabdomyolysis: a reconnaissance mission for prevention. Jornal de Investigação Médica, 2(1).

Sumita, N. M., Andriolo, A., Ferreira, C. E. dos S., Campana, G. A., Oliveira, G., De, F., Brazão, F. V., Vasconcellos, L. de S., Junior, A. P., Lopes, A. C. W., Shcolnik, W., & Mendes, M. E. (2020). Sociedade Brasileira De Patologia Clínica / Medicina Laboratorial (SBPC/ML): Boas Práticas em Laboratório Clínico. In Medicina (Manole Ltd).

Szivak, T. K., Lee, E. C., Saenz, C., Flanagan, S. D., Focht, B. C., Volek, J. S., Maresh, C. M., & Kraemer, W. J. (2018). Adrenal stress and physical performance during military survival training. Aerospace Medicine and Human Performance, 89(2), 99–107. https://doi.org/10.3357/AMHP.4831.2018

Tarafdar, A., & Pula, G. (2018). The role of NADPH oxidases and oxidative stress in neurodegenerative disorders. International Journal of Molecular Sciences, 19(12). https://doi.org/10.3390/ijms19123824

Tsai, K. Z., Lai, S. W., Hsieh, C. J., Lin, C. S., Lin, Y. P., Tsai, S. C., Chung, P. S., Lin, Y. K., Lin, T. C., Ho, C. L., Han, C. L., Kwon, Y., Hsieh, C. B., & Lin, G. M. (2019). Association between mild anemia and physical fitness in a military male cohort: The CHIEF study. Scientific Reports, 9(1), 11165. https://doi.org/10.1038/s41598-019-47625-3

Valko, M., Jomova, K., Rhodes, C. J., Kuča, K., & Musílek, K. (2016). Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. In Archives of Toxicology (Vol. 90, Issue 1). https://doi.org/10.1007/s00204-015-1579-5

Viña, J., Olaso-Gonzalez, G., Arc-Chagnaud, C., De La Rosa, A., & Gomez-Cabrera, M. C. (2020). Modulating Oxidant Levels to Promote Healthy Aging. Antioxidants and Redox Signaling, 33(8), 570–579. https://doi.org/10.1089/ars.2020.8036

WHO. (2020). guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization; Licence: CC BY-NC-SA 3.0 IGO. https://www.who.int/publications/i/item/9789240015128.