COMO É QUE OS ESTUDANTES DE MEDICINA E ENFERMAGEM VEEM A TECNOLOGIA DE SAÚDE? UM ESTUDO DE VALIDAÇÃO PSICOMÉTRICA DO QUESTIONÁRIO DE AVALIAÇÃO DE USABILIDADE EM BANGLADESH
##plugins.themes.bootstrap3.article.main##
Resumo
A modernização da prestação de cuidados de saúde é uma realidade em vários contextos internacionais. Para garantir a utilização eficiente e segura das diversas formas de tecnologia em saúde disponíveis, os profissionais e estudantes devem estar receptivos à incorporação dessas ferramentas na sua prática. Atualmente, não existe em Bangladesh um instrumento para avaliar a aceitação da tecnologia pelos estudantes de saúde.
Objetivo: Traduzir, adaptar culturalmente e validar o Questionário de Avaliação da Usabilidade (UtEQ) entre estudantes de saúde de Bangladesh.
Método: Foi realizado um estudo transversal com uma abordagem metodológica em duas fases. A primeira fase envolveu a tradução do questionário UtEQ para bengali, seguindo as seis etapas propostas por Beaton et al. Na segunda fase, foram avaliadas as propriedades psicométricas do questionário usando uma amostra não probabilística de 486 estudantes de graduação em saúde de três instituições de ensino superior em Bangladesh. Foi realizada uma análise fatorial confirmatória e estimou-se o coeficiente alfa de Cronbach para verificar a consistência interna.
Resultados: Foi encontrada uma consistência interna excelente para todas as dimensões da escala, variando de 0,88 a 0,92, enquanto a análise fatorial confirmatória mostrou indicadores adequados de ajuste.
Conclusão: O UtEQ-B fornece um método confiável e válido para educadores e pesquisadores em saúde avaliarem a aceitação da tecnologia entre estudantes de saúde durante o treinamento clínico em Bangladesh.
Downloads
##plugins.themes.bootstrap3.article.details##
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Referências
Kabir, A.; Karim, M.N.; Billah, B. Primary Healthcare System Readiness to Prevent and Manage Non-Communicable Diseases in Bangladesh: A Mixed-Method Study Protocol. BMJ Open 2021, 11, e051961, doi:10.1136/bmjopen-2021-051961.
World Health Organization—Country Office for Bangladesh National STEPS Survey for Non-Communicable Diseases Risk Factors in Bangladesh 2018; Country Office for Bangladesh: Dhaka, 2018;
Uddin, J.; Biswas, T.; Adhikary, G.; Ali, W.; Alam, N.; Palit, R.; Uddin, N.; Uddin, A.; Khatun, F.; Bhuiya, A. Impact of Mobile Phone-Based Technology to Improve Health, Population and Nutrition Services in Rural Bangladesh: A Study Protocol. BMC Med Inform Decis Mak 2017, 17, 101, doi:10.1186/s12911-017-0502-9.
Bhattacharyya, D.S.; Shafique, S.; Akhter, S.; Rahman, A.; Islam, M.Z.; Rahman, N.; Anwar, I. Challenges and Facilitators of Implementation of an Information Communication and Technology (ICT)-Based Human Resources Management Tool in the Government Health Sector in Bangladesh: Protocol for an Exploratory Qualitative Research Study. BMJ Open 2020, 10, e043939, doi:10.1136/bmjopen-2020-043939.
Prodhan, U.K.; Rahman, M.Z.; Jahan, I. Design and Implementation of an Advanced Telemedicine Model for the Rural People of Bangladesh. THC 2018, 26, 175–180, doi:10.3233/THC-171101.
Bayramzadeh, S.; Aghaei, P. Technology Integration in Complex Healthcare Environments: A Systematic Literature Review. Appl Ergon 2021, 92, 103351, doi:10.1016/j.apergo.2020.103351.
Islam, S.M.S.; Tabassum, R. Implementation of Information and Communication Technologies for Health in Bangladesh. Bull. World Health Organ. 2015, 93, 806–809, doi:10.2471/BLT.15.153684.
Hoque, Md.R.; Bao, Y. Cultural Influence on Adoption and Use of E-Health: Evidence in Bangladesh. Telemedicine and e-Health 2015, 21, 845–851, doi:10.1089/tmj.2014.0128.
Ahmed, T.; Lucas, H.; Khan, A.S.; Islam, R.; Bhuiya, A.; Iqbal, M. EHealth and MHealth Initiatives in Bangladesh: A Scoping Study. BMC Health Serv Res 2014, 14, 260, doi:10.1186/1472-6963-14-260.
Islam, M.S. Introducing Modern Technology to Promote Transparency in Health Services. International Journal of Health Care Quality Assurance 2015, 28, 611–620, doi:10.1108/IJHCQA-01-2015-0016.
Alam, M.Z.; Hu, W.; Uddin, A. DIGITAL TRANSFORMATION IN HEALTHCARE SERVICES SECTOR OF BANGLADESH: CURRENT STATUS, CHALLENGES AND FUTURE DIRECTION. RISUS 2020, 11, 30–38, doi:10.23925/2179-3565.2020v11i1p30-38.
Plch, L. Perception of Technology-Enhanced Learning by Medical Students: An Integrative Review. Medical Science Educator 2020, 30, 1707, doi:10.1007/S40670-020-01040-W.
Ketikidis, P.; Dimitrovski, T.; Lazuras, L.; Bath, P.A. Acceptance of Health Information Technology in Health Professionals: An Application of the Revised Technology Acceptance Model. Health Informatics J 2012, 18, 124–134, doi:10.1177/1460458211435425.
Parreira, P.; Bernardes, R.A.; Santos-Costa, P.; Graveto, J.; Ferreira, P.A.; Salgueiro-Oliveira, A.; Sousa, L.B.; Serambeque, B.; Mónico, L.; Kapun, M.M.; et al. Digital Technology Scale to Coach People with Chronic Diseases: Evidence of Psychometric Validity in Four European Countries. Lecture Notes in Bioengineering 2021, 245–252, doi:10.1007/978-3-030-72567-9_23/COVER.
Nadal, C.; Sas, C.; Doherty, G. Technology Acceptance in Mobile Health: Scoping Review of Definitions, Models, and Measurement. J Med Internet Res 2020, 22, e17256, doi:10.2196/17256.
Arkorful, V.E.; Hammond, A.; Lugu, B.K.; Basiru, I.; Sunguh, K.K.; Charmaine‐Kwade, P. Investigating the Intention to Use Technology among Medical Students: An Application of an Extended Model of the Theory of Planned Behavior. J Public Affairs 2020, doi:10.1002/pa.2460.
Mensah, N.K.; Adzakpah, G.; Kissi, J.; Boadu, R.O.; Lasim, O.U.; Oyenike, M.K.; Bart-Plange, A.; Dalaba, M.A.; Sukums, F. Health Professional’s Readiness and Factors Associated with Telemedicine Implementation and Use in Selected Health Facilities in Ghana. Heliyon 2023, e14501, doi:10.1016/J.HELIYON.2023.E14501.
Teo, T. Technology Acceptance Research in Education. In Technology Acceptance in Education; Teo, T., Ed.; SensePublishers: Rotterdam, 2011; pp. 1–5 ISBN 978-94-6091-487-4.
Ammenwerth, E. Technology Acceptance Models in Health Informatics: TAM and UTAUT. Stud Health Technol Inform 2019, 263, 64–71, doi:10.3233/SHTI190111.
Parreira, P.; Sousa, L.B.; Marques, I.A.; Santos-Costa, P.; Cortez, S.; Carneiro, F.; Cruz, A.; Salgueiro-Oliveira, A. Usability Assessment of an Innovative Device in Infusion Therapy: A Mix-Method Approach Study. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 8335 2020, 17, 8335, doi:10.3390/IJERPH17228335.
Parreira, P.; Bernardes, R.A.; Santos-Costa, P.; Graveto, J.; Ferreira, P.A.; Salgueiro-Oliveira, A.; Sousa, L.B.; Serambeque, B.; Mónico, L.; Kapun, M.M.; et al. Digital Technology Scale to Coach People with Chronic Diseases: Evidence of Psychometric Validity in Four European Countries. In Gerontechnology III; García-Alonso, J., Fonseca, C., Eds.; Lecture Notes in Bioengineering; Springer International Publishing: Cham, 2021; pp. 245–252 ISBN 978-3-030-72566-2.
Parreira, P.; Costa, P.S.; Salgueiro-Oliveira, A.; Ferreira, P.A.; Sousa, L.B.; Marques, I.A.; Bernardes, R.; Kokko, R.; Graveto, J. Nursing Students Digital Competencies for the Self-Management of Patients: Development of the DigiNurse Model’s Interface. In Gerontechnology; García-Alonso, J., Fonseca, C., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, 2019; Vol. 1016, pp. 249–256 ISBN 978-3-030-16027-2.
Beaton, D.E.; Bombardier, C.; Guillemin, F.; Ferraz, M.B. Guidelines for the Process of Cross-Cultural Adaptation of Self-Report Measures. Spine (Phila Pa 1976) 2000, 25, 3186–3191, doi:10.1097/00007632-200012150-00014.
Terwee, C.B.; Bot, S.D.M.; De Boer, M.R.; Van Der Windt, D.A.W.M.; Knol, D.L.; Dekker, J.; Bouter, L.M.; De Vet, H.C.W. Quality Criteria Were Proposed for Measurement Properties of Health Status Questionnaires. Journal of Clinical Epidemiology 2007, 60, 34–42, doi:10.1016/j.jclinepi.2006.03.012.
Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. https://doi.org/10.1080/10705519909540118 2009, 6, 1–55, doi:10.1080/10705519909540118.
Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling 1999, 6, 1–55, doi:10.1080/10705519909540118.
World Health; Organization, Country office for Bangladesh WHO Bangladesh Country Cooperation Strategy: 2020–2024; Dhaka, 2022; ISBN 978-92-9020-947-8.
(PDF) Activity Analysis of Nurses Working in a Teaching Hospital of Dhaka, Bangladesh Available online: https://www.researchgate.net/publication/317521285_Activity_Analysis_of_Nurses_working_in_a_Teaching_Hospital_of_Dhaka_Bangladesh (accessed on 10 May 2023).
Ahmed, S.M.; Hossain, M.A.; RajaChowdhury, A.M.; Bhuiya, A.U. The Health Workforce Crisis in Bangladesh: Shortage, Inappropriate Skill-Mix and Inequitable Distribution. Hum Resour Health 2011, 9, 3, doi:10.1186/1478-4491-9-3.
Ahmed, T.; Rizvi, S.J.R.; Rasheed, S.; Iqbal, M.; Bhuiya, A.; Standing, H.; Bloom, G.; Waldman, L. Digital Health and Inequalities in Access to Health Services in Bangladesh: Mixed Methods Study. JMIR Mhealth Uhealth 2020, 8, e16473, doi:10.2196/16473.
Golz, C.; Peter, K.A.; Müller, T.J.; Mutschler, J.; Zwakhalen, S.M.G.; Hahn, S. Technostress and Digital Competence Among Health Professionals in Swiss Psychiatric Hospitals: Cross-Sectional Study. JMIR Ment Health 2021, 8, e31408, doi:10.2196/31408.
Kasemy, Z.A.; Sharif, A.F.; Barakat, A.M.; Abdelmohsen, S.R.; Hassan, N.H.; Hegazy, N.N.; Sharfeldin, A.Y.; El-Ma’doul, A.S.; Alsawy, K.A.; Abo Shereda, H.M.; et al. Technostress Creators and Outcomes Among Egyptian Medical Staff and Students: A Multicenter Cross-Sectional Study of Remote Working Environment During COVID-19 Pandemic. Front Public Health 2022, 10, 796321, doi:10.3389/fpubh.2022.796321.
Hui, C.Y.; Abdulla, A.; Ahmed, Z.; Goel, H.; Monsur Habib, G.M.; Teck Hock, T.; Khandakr, P.; Mahmood, H.; Nautiyal, A.; Nurmansyah, M.; et al. Mapping National Information and Communication Technology (ICT) Infrastructure to the Requirements of Potential Digital Health Interventions in Low- and Middle-Income Countries. J Glob Health 2022, 12, 04094, doi:10.7189/jogh.12.04094.
Califf, C.B. Stressing Affordances: Towards an Appraisal Theory of Technostress through a Case Study of Hospital Nurses’ Use of Electronic Medical Record Systems. Information and Organization 2022, 32, 100431, doi:10.1016/j.infoandorg.2022.100431.
Lucena, J.C.-R.; Carvalho, C.; Santos-Costa, P.; Mónico, L.; Parreira, P. Nurses’ Strategies to Prevent and/or Decrease Work-Related Technostress: A Scoping Review. CIN: Computers, Informatics, Nursing 2021, 39, 916–920, doi:10.1097/CIN.0000000000000771.
Konttila, J.; Siira, H.; Kyngäs, H.; Lahtinen, M.; Elo, S.; Kääriäinen, M.; Kaakinen, P.; Oikarinen, A.; Yamakawa, M.; Fukui, S.; et al. Healthcare Professionals’ Competence in Digitalisation: A Systematic Review. J Clin Nurs 2019, 28, 745–761, doi:10.1111/jocn.14710.
Carayon, P.; Hoonakker, P. Human Factors and Usability for Health Information Technology: Old and New Challenges. Yearb Med Inform 2019, 28, 071–077, doi:10.1055/s-0039-1677907.
Ayatollahi, H.; Hemmat, M.; Nourani, A.; Saviz, P. Staff and Students’ Perceptions about Using Telehealth Technology in a Medical University: A Qualitative Study. Journal of American College Health 2022, 1–9, doi:10.1080/07448481.2022.2082842.
Briscoe, G.W.; Fore Arcand, L.G.; Lin, T.; Johnson, J.; Rai, A.; Kollins, K. Students’ and Residents’ Perceptions Regarding Technology in Medical Training. Acad Psychiatry 2006, 30, 470–479, doi:10.1176/appi.ap.30.6.470.
Risling, T. Educating the Nurses of 2025: Technology Trends of the next Decade. Nurse Educ Pract 2017, 22, 89–92, doi:10.1016/j.nepr.2016.12.007.